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ABSTRACT

A numerical method of computing reflection and transmission

coefficients for inhomogeneous plasma layers when the gradient of

inhomogeneity is normal to the surface of the layer is presented. The

method is applied to a specific problem of telemetry from a body re-

entering the earth's atmosphere and the results are discussed.
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INTRODUCTION

In attempting telemetry of data from test bodies re-entering

the earth's atmosphere, the problem of penetrating with an electro-

magnetic wave the sheath of ionized gases (plasma) which envelopes

these bodies at hypersonic velocities is encountered. A knowledge of

reflection and transmission coefficients for the sheath is of value in

attempts at solution of this problem.

This paper presents a method for computing reflection and

transmission coefficients for a plane-parallel inhomogeneous isotropic

layer of plasma when the inhomogeneity is a function only of distance

along a normal to the surface of the layer. A plane wave at normal in-

cidence is assumed.

It is recognized that as a model for the plasma sheath described

above, the idealization treated is deficient in several important respects.

It neglects the curvature of the layer as well as the fact that the incident

wave is not plane. The effects of induction fields near the antenna and

the problem of antenna breakdown are similarly ignored.

Despite these objections, it is believed that solutions of the

simplified problem may be taken as order of magnitude estimates of the

transparencies of sheaths having the prescribed distributions of electrical

properties. Moreover, the results should be of interest for comparison

with those of more comprehensive calculations.
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This and related problems have been treated by several authors,

but most of these neglect the effect of spatial variation of collision fre-

quency which Kritz7 has shown to be significant (in certain cases) in

determining the reflection and transmission characteristics of the plasma.

Exact analytic solutions in closed form are possible only for the

simpler distributions of permittivity and conductivity, and more com-

plicated distributions have been treated using various approximation

1, Z, 6. 8
methods Existing solutions of these types for a few simple

3
plasma geometries are discussed and tabulated by Graf and Bachynski

These solutions, however, have rather limited applicability and may prove

cumbersome in calculations of reflection and transmission coefficients.

A direct and expedient method for computing these coefficients for a wide

variety of distributions of both permittivity and conductivity which takes

advantage of available automatic computation facilities is needed.

These requirements are probably best met by a method involving

the direct numerical integration of Maxwell's equations within the

plasma. This approach is not new, and several workers in the field

have discussed the relative merits of different forms for the equations

7
and of various integration processes. Kritz presents a method, and

10
Zivanovic uses a numerical technique to compute a set of matrix

elements descriptive of the plasma layer after the manner of four terminal

networks and transmission lines in network theory. Klein6 and Budden1
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treat the problem of joining approximate analytic solutions with numerical

solutions at boundaries separating the regions of validity of the two.

Each of these approaches offers certain advantages.

The computer program used provides flexibility in the choice of

distributions of both conductivity and permittivity and the modified

Runge-Kutta integration process employed allows for control of accuracy

in the solution. The program is described in greater detail in a report

5
by Kavanaugh 4nd Scarborough
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ANALYSIS

Maxwell's equations for a stationary medium containing no free

charges are:

" D(t) = 0

B (t) 0

-X E(t) - aB(t)
a t

"XH(t) = + aD(t)
at

For an inhomogeneous isotropic plasma, the constitutive equa-

tions may be written

B(t) H (t)

D(t) = c E (t) (2)

with L , E, and (r scalar functions of position.

In a plasma it is observed that the effective permeability

is very nearly equal to the free-space value 'o" It has been

5, 6, 8,
shown in several works that, if only those fields whose time

-itt
dependence may be expressed as e are considered, the conductivity

effective in the plasma is given by the relation

V n e 
2

(3
m(v 2 + W2) (3)
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This expression is arrived at by considering the motion of an

electron under the influence of an electromagnetic wave and subject to

damping by collisions with heavier particles. The v x B(t) term in the

Lorentz force is found to be negligible.

The same analysis leads to the following expression for the

permittivity effective in the plasma:

I= [ nea 
4

0 m0(v2 + WZ)(

nea
in terms of the plasma frequency w 2-- the expressions (3)

and (4) are

avw

= E p (5)o (VZ + 2)

and

F

E 0 2 
+( Z (6)

iwt- iwt
Writing E(t) a E e and H(t) a H e and using the

constitutive equations (2), Maxwell's equations (1) become

V E=O

V. H =0

(7)
V XE iw H

V XH (a- - iW E) E.

5



Confining attention to the particular geometry of interest, if the

spatial variations of the field quantities and E and 0r depend on a single

coordinate z normal to the surface of the layer, the harmonic fields

are transverse and the equations (7) reduce to

- aceE =

E 0

az
(8)

az

n - (0- iW ) E

in which n is a unit vector along the z axis. Expanding the first of these

yields the relation

+ F n--+ - L. = o. (9)
az a

The first term of (9) represents a coupling between the electric field

vector and the gradient of the inhomogeneity in permittivity which is here

zero since n . E = 0 for a transverse field and normal incidence.

Hence, the first of equations (8) becomes

n -0.
az
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A further simplification of the equations is possible, since only

the magnitudes of the field need be considered, their -'irections in space

being constant. The third and fourth of equations (8) then reduce to

dE iw

dz o
(10)

dH
d- i (E w + ica) E

the first two equations yielding no additional information concerning the

fields.

Equations (10) have been solved exactly for only a few simple dis-

tributions, E (z) and ar(z) and the general case must be treated by various

approximation methods or by numerical techniques. Since in the

present instance, numerical values for reflection and transmission co-

efficients are of greater interest than a general solution to (10) and

facilities for high-speed automatic computation are available, the latter

alternative is favored.

Following a procedure suggested by the work of Kritz 7 and

1
Budden , a transmitted wave ET of a particular amplitude (unity) and

phase (k0 z - kozo), is assumed in the free space region immediately

"outside" (z > zo ) the plasma layer. (See Figure 1.) With ET (Z 0

and HT (z o ) = as initial values, the four simultaneous equations
0

represented by (10) are integrated numerically over the region 0 < z < zop

7



HOMOGENEOUS PLASMA VACUUM

DIELECTRIC

Em' 0LO , a- = 0 r (Z) o' I " (Z) E0, l10o 0" = 0

I I ikz
E =E e

0

HI=H ikz "

HH e dE
0Tz = iwt ° H
dz 0

ET eiko (z - zo)

HT co iko (z - Zo)HdH-e (zo 0

R R -ikz dH i (E W + i a-) E 0

E E e d z
0

.4
H R. H R -ikzH H e

0

ANALYTIC NUMERICAL ANALYTIC

0 zo

Figure 1. Schematic Representation Showing the
Type of Solution Valid in Each Region
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the integration proceeding backwards along the z axis. At the boundary

z = 0, it is required that the E and H fields be continuous, i. e., that

E (0) + E R (0)= E (0)
(11)

H (0) + HR (0) H (0)

But

E (0) =E
0

R R
E (0)= E

H 1(0) E 0

and HR (0) -22 m RR

Substituting from (12) into (11), the following pair of simultaneous

equations is obtained:
I R

E + E = E(0)
o o

(13)
E 1I R = %

E - EH (0)o 0o

Solving for E 1 and EoR gives

E ' E o H (0)]

and

E R E (0) -o H(01

11m

9



The reflection coefficient, defined by

IE~
o2 (15)

IE I0

becomes, in terms of Er, Ei, Hr, H i defined by E(o) m Er + iEi and

H (o) Hr + iH i ,

(-- E - -Jo H) + (4J.m E. - 04o Hi)
R m r 0 r m(16)

(, E + r)Z + ( r - - E. + -H.)Z
m r 0 r m 1 0 1

Similarly, the transmission coefficient is

T --- = m E (17)

m IEI (.-m Er + H)Z + { FE E i + 4; Hi)2

Requiring conservation of energy gives for the absorption coefficient

A = I -(R + T) (18)

I.)



EXAM PLE

The following study will serve as an example of the type problem

to which the method is applicable:

It is required to find transmission and reflection coefficients for

the plasma sheath surrounding certain bodies during re-entry at an alti-

tude of 80 km and at speeds of Mach 18 and Mach 30. Various

positions on the body surface are to be considered in order to determine

the most favorable location for a transmitting slot antenna, and the effect

on transmission of varying the dielectric constant of the "window" cover-

ing the slot is to be investigated. A transmitting frequency of 240 Mc/s

is assumed.

Electrical properties of the plasma were computed from chemical

equilibrium flow field values of pressure and enthalpy. Two points on the

body surface (at 2 Rn and 4 Rn, as measured along the axis of symmetry,

where Rn is the nose radius of the body) were selected as representative,

(Figure 2). Profiles of relative permittivity and conductivity along lin's

normal to the body surface at these points were taken as the distribu. ,no

of electrical properties within a plane-parallel plasma slab and along a

normal to its surface. A more complete description of the above proce-

dure is to be found in the appendix, together with curves representing the

distributions prevailing at the various speeds and positions.

The distributions were approximated by the following analytical

expressions:
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Mach 18

1 108 z

-0.4 e 0 < z < 0.095
E

o 1, z > 0. 095

2R

Sf0 e-38. 4 z
.00 z < 0. 0 95

5-

E C,
S z >0. 095

-0.09 - 0 < z < 0.095

0o z > 0. 095

4R n

-28. 3 z
.01 35 c 0 < z < 0.095

a.
0 to z > 0. 095

Mach 30

( 500 z - 169 0 - z < 0.0681

0 z > 0. 0681

a ' ,'... ;, :, ). ,.€ 0 < z < 0. 0980

0z > 0.0980

* 110 < 0. 0976

z > 0. 976

.. 0 < z < 0.0954

z >0. 0954

- ) in . U.I ~C I0,hxo rnidian/sec



RESULTS

The reflection and transmission coefficients computed using

these distributions and for several values of c m are tabulated below:

Mach 30

2 Rn 4 Rn

IM/to R T R T

1 0.998 0. 529 x I0 3  0.998 0. 478 x I0 3

2 0.998 0.742 x 10 3  0.997 0.669 x 10 3

3 0.997 0.903x l0 " s  0.997 0.810 x 10 3

4 0.997 0. 104 x 10 0.997 0. 925 x 10- 3

5 0.997 0.115 x 10 - Z  0.996 0. 102 x 10 "

Mach 18

2 Rn 4 Rn

gm/to R T R T

1 0. 989 x 10 " 4  0.995 0. 175 x 10 "4  0.998

2 0.290 x 10 "1  0.996 0.293 x 10 "1  0.968

3 0.711 x 10 -  0.924 0.716 x 10 - 1 0.926

4 0. no x 100 0.885 0. 111 x 100 0.887

5 0. 145 x 100 0.851 0. 146 x 100 0.852

Reflection and Transmission Coefficients for the Plasma Sheath Sur-
rounding a Body Re-entering the Atmosphere at Mach 18 and Mach 30,
at Two Positions on the Surface and for Various Dielectric Constants
of the Antenna Window.
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CONC LUSIONS

Several conclusions of a qualitative nature may be drawn from

these results. At Mach 18, transmission is almost complete with very

little reflection occurring, whereas, at Mach 30, the situation is re-

versed. It will be noted that in neither case is absorption of energy

responsible for appreciable loss in transmission, since the absorption

coefficient A a 1 - (R + T) is in every case very small. The effect is

due almost entirely to increased reflection.

Also of interest is the effect on transmission of the value of

permittivity of the "window". At Mach 18, an increase in this per-

mittivity results in a decrease in transmitted power, whereas the opposite

is true at Mach 30. It is suggested that further investigation of this

effect is needed to determine whether it is significant. The results

further indicate that at Mach 30, absorption is more pronounced at the

4 Rn position than at ZRn, as evidenced by the smaller values for both

R and T at this position. The reason for this is not yet apparent, but

the difference in wake thickness, together with the fact that E has large

negative values at this speed, are probably responsible.

Summarizing, the results indicate that for the assumed trans-

mission frequency, failure to penetrate the Mach 18 sheath may not be

attributed to reflection or absorption of the electromagnetic energy in the

wave by the plasma through the mechanisms considered here. At Mach 30,

15



however, these effects almost certainly will preclude transmission

Iat this frequency and at any position on the body surface.
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APPENDIX

Values of pressure and enthalpy in the flow field surrounding a

particular body were computed assuming chemical equilibrium for speeds

of Mach 18 and Mach 30 at an altitude of 80 km. (d)

From these values, the corresponding temperatures and mass

density ratios were determined from a Mollier diagram of properties of

equilibrium air. Electron densities were then read from a second

chart giving electron density as a function of mass density ratio for

various temperatures. (b) Values for the collision frequency v were

determined from the formula

V= (1.10 x 101l )x pressure in atmospheres(c)
temperature in "K

Using the values of n and v thus determined, r and E were com-

puted using equations (3) and (4). Contours of constant E/E, are plotted

in Figures 3 and 5, and contours of constant G/eOw are plotted in Figures

4 and 6, and approximate location of the shock wave is also shown.

Plots of E /Eo and 0/, ow as functions of distance along the

normals are given in Figures 7 through 10. The Mach 18 curves are

approximated by exponential functions; the Mach 30 curves by linear func-

tions. These analytic approximations appear in the main body of the report.

18
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